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Analysis of resonances in action space for symplectic maps
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~Received 13 March 1997; revised manuscript received 27 August 1997!

The network of resonances in the action plane for a four-dimensional map is obtained by computing the
actions from the Fourier coefficients of the orbits, and it is compared with the results of Birkhoff normal forms.
This method, which combines the positive features of standard frequency analysis and normal forms, is suitable
to study the one turn map of a particle accelerator.@S1063-651X~97!12312-1#

PACS number~s!: 05.45.1b, 03.20.1i, 41.85.2p, 29.27.2a
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The phase space of four dimensional symplectic map
difficult to explore. These maps describe the motion o
charge in the transverse section of a particle accelerato
more generally the Poincare´ section of a Hamiltonian system
with three degrees of freedom. The presence of an elli
fixed point, corresponding to a close stable orbit along
lattice, allows us to use Birkhoff normal forms, and to intr
duce a HamiltonianH, which interpolates the orbits and de
fines approximate invariants@1,2#. Close to the origin the
normal forms reproduce fairly well the numerical iteratio
of the map~tracking! @3,4#, but the agreement becomes po
when the short term stability boundary is approached. T
frequency analysis, first introduced in celestial mechan
@5,6#, has been used to describe the whole stability reg
@7,8#. Strategies to compute the invariants by solving
Hamilton-Jacobi equation have been previously conside
@9#. We propose to compute the Fourier coefficients and
invariant actions for every orbit with nonresonant freque
cies. The decay of the Fourier amplitudes determines
analyticity strip of the KAM tori, whereas the map betwe
the nonresonant frequencies and the actions provides a
variant picture of the nonlinear resonances. The image in
action space of a neighborhood of the origin is a set w
empty channels corresponding to the resonances~since the
actions are not defined on resonant orbits!. The resonance
associated with a given channel is identified either by n
resonant normal forms or by using the frequency map.

Given any orbit @x1(n),p1(n),x2(n),p2(n)# of a sym-
plectic map, we consider the following representation a
Fourier series:

x1~n!2 ip1~n!5 (
k1 ,k2

ei ~V1k11V2k2!nak1 ,k2
,

~1!

x2~n!2 ip2~n!5 (
k1 ,k2

ei ~V1k11V2k2!nbk1 ,k2
.

By using a Hanning filter@5,10#, a high accuracy is achieve
for the frequenciesV1 andV2, with a small sample of data
~the error decreases asymptotically asN24 @10#!. If the fre-
quencies are nonresonant, the orbit is dense on a two dim
sional~2D! torus, whose parametrization is given by Eq.~1!,
where V1n and V2n are replaced by the continuous va
ablesQ1 andQ2. Among the coefficientsak1 ,k2

andbk1 ,k2
,

which asymptotically have an exponential decay withuk1u
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1uk2u, only theK leading terms are kept. The accuracy of t
interpolation, depending onK and the lengthN of the orbit,
is measured by the mean square deviations between the true
orbit and its Fourier reconstruction. By choosingN large
enough for a fixedK, the desired accuracy for the freque
cies and theK leading coefficients can be achieved. In ord
to keeps constant, we have to increaseK while moving
away from the origin, since the tori are more perturbed a
their analyticity strip is thinner. Conversely, keepingK con-
stant, we expects to grow with the distance from the origin

Given an orbit with nonresonant frequencies, we consi
the torus parametrized by the anglesQ1 and Q2. By fixing
Q2 or Q1 we obtain the basic cyclesg1 or g2, namely, the
1D tori whose topological product is the 2D torus itself. T
invariant actions are defined by

Ji5
1

2p R
g i

~p1dx11p2dx2!

5
1

2pE0

2pS p1

]x1

]Q i
1p2

]x2

]Q i
DdQ i , i 51,2. ~2!

Since the actionJ1 (J2) is independent of the choice of th
angleQ2 (Q1), after averaging on it we have

Ji5
1
2 (

k1 ,k2

ki~ uak1k2
u21ubk1k2

u2!, i 51,2. ~3!

If the nonlinear frequenciesV1 andV2 satisfy resonant con
ditions

q1V11q2V252pl , q1 ,q2 ,l PN, ~4!

the actions are no longer defined. For a map with lin
frequenciesv1 andv2, the Birkhoff normal form defines a
HamiltonianH which interpolates the orbits@1,2#,

H5 (
k1 ,k2

Hk1 ,k1
~1 ,2!cos~k1u11k2u21dk1 ,k2

!, ~5!

whereHk1 ,k2
is a polynomial in1

1/2 and 2
1/2. If the linear

frequencies are nonresonant only thek15k250 terms con-
1178 © 1998 The American Physical Society
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tribute toH, and the actions are invariant. The Hamiltoni
H, truncated at orderM , explicitly reads

H5H0,0~J1 ,J2!

5v1J11v2J21 (
m>2

M

(
m11m25m

hm1 ,m2
J1

m1J2
m2 ~6!

~we denote the invariant actions by capital letters!. The reso-
nance condition~4! on the frequenciesV i5]H/]Ji reads

q1v11q2v222pl 1 (
m>1

M21

(
m11m25m

@q1~m111!hm111,m2

1q2~m211!hm1 ,m211#J1
m1J2

m250. ~7!

At the lowest truncation orderM52, the curves defined by
Eq. ~7! are straight lines, and at the next orderM53 they are
arcs of conics.

FIG. 1. Plot of the resonance lines on the actions plane for
4D Hénon map with linear frequencies (0.2832p,0.3132p).

FIG. 2. Comparison between the resonance lines computed
merically and using the nonresonant normal from at order 4, for
4D Hénon map with linear frequencies (0.2832p,0.3132p).
The following strategy is used to compute the resona
lines from tracking. All the points of a regular 2D lattice in
section plane of phase space are iteratedN times, and the
corresponding orbits are Fourier analyzed. After discard
the points whose orbits have resonant frequencies, the
tions are computed by Eq.~3! for the remaining ones: the
plot of these points in the (J1 ,J2) plane exhibits empty chan
nels corresponding to the resonances. In Fig. 1 we show
the quadratic He´non map with linear frequenciesv150.28
32p and v250.3132p, the results obtained by choosin
6003600 points in the square 0<x<0.5, 0<y<0.5, and
px5py50. The integer vector corresponding to any res
nance (q1 ,q2 ,l ) can be read in Fig. 2, where the resonan

e

u-
e

FIG. 3. Mean square deviation of the signal from its Four
reconstruction of the 4D He´non map with linear frequencies (0.2
32p,0.3132p). The initial points are taken in thepx50, py50
plane, and are plotted in the (x,y) plane with four tones of gray of
increasing darkness corresponding to 231022.s>1022, 1022

.s>531023 531023.s>1023, andsz<1023.

FIG. 4. Comparison between the amplitude of the~5,0! reso-
nance of the He´non map with linear frequencies (0.20
32p,0.61803432p) computed numerically and with a quasires
nant normal form. The truncation order ofH in Cartesian coordi-
nates are 8~continuous line! and 6~dashed line!.
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1180 57BRIEF REPORTS
lines, computed from Eq.~7! with M52, are shown. The
agreement is excellent near the origin, where the resona
width is below the pixel dimension.

We computed the mean square deviations of the Fourier
interpolation with respect to the orbit for fixed values ofK
and N. To every initial condition in the square 0<x
<0.5, 0<y<0.5, andpx5py50, a tone of gray has bee
assigned according to the value ofs, having chosenN
5104 andK510. In Fig. 3, we show the result of this anal
sis for the He´non map with linear frequenciesv150.205
32p andv25(A521)3p close to the resonance (5,0,1
The trajectories withs.231022 have been dropped from
the figure, since we assume them to be chaotic, or at
border of a chaotic region. This conjecture has been num
cally checked for some orbits. We compare these results
the quasiresonant normal form for the (5,0,1) resonan
whose lowest order Hamiltonian readsH5h0,0( j 1 , j 2)
1A j1

5/2cos(5u11d), where h0,0 and A j1
5/2 are the leading

terms ofH0,0 andH5,0. Above and below the separatrix, th
invariant action J1 is given by J1

5(2p)21*0
2p j 1(u1 , j 2 ;E)du1, wherej 1 is defined implicitly

by H( j 1 , j 2 ,u1)5E, andE is fixed by the initial condition
@11#. Correspondingly the angleQ1 is computed and, to-
gether withJ25 j 2, Q25u2 defines the canonical transfo
mation to the new variables. By computing the solutionsJ16
G
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e
ri-
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corresponding to the separatrix, whereE is the valueH takes
at the hyperbolic points, we evaluateJ16(J2), which gives
the solid and dotted lines of Fig. 4 corresponding to trun
tion order M54 and 3 ~the truncation order ofH is 2M
referred to cartesian coordinates!.

The resonance plot in action space provides an effec
picture of the resonance structures, and is suitable to in
tigate the chaotic regions near the short term stability bord
The invariance of actions for a small periodic modulation
the linear frequencies, and consequently the stability of
resonance patterns in action space, have been checked
computation of the resonance lines with the lowest or
normal forms is straightforward, whereas the analytic de
mination of the resonance width is more tricky, since it r
quires the computation of the corresponding quasireson
normal form and the numerical evaluation of the invarian
The proposed method is suitable to investigate the betatr
motion of realistic accelerator models or the data taken fr
experiments with pencil beams, since it provides a picture
nonlinear resonances in the space of invariants, with
same computational load as the standard frequency anal
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