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Analysis of resonances in action space for symplectic maps
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The network of resonances in the action plane for a four-dimensional map is obtained by computing the
actions from the Fourier coefficients of the orbits, and it is compared with the results of Birkhoff normal forms.
This method, which combines the positive features of standard frequency analysis and normal forms, is suitable
to study the one turn map of a particle accelerdts0.063-651%97)12312-1

PACS numbegps): 05.45:+b, 03.20+i, 41.85—p, 29.27-a

The phase space of four dimensional symplectic maps is-|k,|, only theK leading terms are kept. The accuracy of the
difficult to explore. These maps describe the motion of ainterpolation, depending ok and the lengtiN of the orbit,
charge in the transverse section of a particle accelerator, @ measured by the mean square deviatidmetween the true
more generally the Poincasection of a Hamiltonian system orbit and its Fourier reconstruction. By choosihy large
with three degrees of freedom. The presence of an elliptienough for a fixedK, the desired accuracy for the frequen-
fixed point, corresponding to a close stable orbit along thesies and the&K leading coefficients can be achieved. In order
lattice, allows us to use Birkhoff normal forms, and to intro- to keep o constant, we have to increase while moving
duce a HamiltoniarH, which interpolates the orbits and de- away from the origin, since the tori are more perturbed and
fines approximate invariantsl,2]. Close to the origin the their analyticity strip is thinner. Conversely, keepikigcon-
normal forms reproduce fairly well the numerical iterations stant, we expeat to grow with the distance from the origin.
of the map(tracking [3,4], but the agreement becomes poor  Given an orbit with nonresonant frequencies, we consider
when the short term stability boundary is approached. Thehe torus parametrized by the angl@s and ®,. By fixing
frequency analysis, first introduced in celestial mechanic®, or ®, we obtain the basic cycleg, or y,, namely, the
[5,6], has been used to describe the whole stability regionp tori whose topological product is the 2D torus itself. The
[7,8]. Strategies to compute the invariants by solving theinvariant actions are defined by
Hamilton-Jacobi equation have been previously considered
[9]. We propose to compute the Fourier coefficients and the
invariant actions for every orbit with nonresonant frequen- J;
cies. The decay of the Fourier amplitudes determines the
analyticity strip of the KAM tori, whereas the map between
the nonresonant frequencies and the actions provides an in- =
variant picture of the nonlinear resonances. The image in the 2mJo
action space of a neighborhood of the origin is a set with
empty channels corresponding to the resonartsgge the  Since the actiod; (J,) is independent of the choice of the
actions are not defined on resonant opbifBhe resonance angle®, (0,), after averaging on it we have
associated with a given channel is identified either by non-
resonant normal forms or by using the frequency map.

Given any orbit[xy(n),ps(n),xa(n),po(n)] of a sym- 3=3 ka2t ), i=12. 3
plectic map, we consider the following representation as a k1.kz 1 re
Fourier series:

(P1dXy+ podx,)

“22 9,

Lol 2 Xelie ic12 (@
pl&_@i+p2(9_®i i i=12. (2

If the nonlinear frequencieQ, and{}, satisfy resonant con-

X1(n)—ipy(n)= k§2 eimlkl*“zkz)”akl’kz, ditions
@) A:Q:+092Q,=27/, 01,0,,7/ €N, (4)
_i — i(Qqkq+Qoky)
x2(n) |p2(n)—k§<2 e nbkl'kz' the actions are no longer defined. For a map with linear

frequenciesw; and w,, the Birkhoff normal form defines a
By using a Hanning filtef5,10], a high accuracy is achieved HamiltonianH which interpolates the orbifdl,2],

for the frequencie$); and(},, with a small sample of data

(the error decreases asymptoticallyhis* [10]). If the fre-

guencies are nonresonant, the orbit is dense on a two dimen- H= 2 Hkl'kl(Jl,Jz)COiklel‘F k,6,+ 5k1,k2)a (5)
sional(2D) torus, whose parametrization is given by EB, Kikz

where ();n and Q),n are replaced by the continuous vari-

ables®; and®,. Among the coefficientsy , andby ,  whereH,, , is a polynomial inj12 and 3. If the linear

which asymptotically have an exponential decay with| frequencies are nonresonant only #he=k,=0 terms con-
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FIG. 1. Plot of the resonance lines on the actions plane for the [, 3. Mean square deviation of the signal from its Fourier
4D Henon map with linear frequencies (0.227,0.31x2). reconstruction of the 4D H®n map with linear frequencies (0.28

_ _ _ _ _ ~ X27,0.31X2m7). The initial points are taken in thg,=0, p,=0
tribute toH, and the actions are invariant. The Hamiltonianplane, and are plotted in the,f/) plane with four tones of gray of

H, truncated at ordeM, explicitly reads increasing darkness corresponding tXx 20" 2>¢=>10"2, 10 2
>g=5%X10"°5%x10"%>¢=>10"3, ando,<10°.
H=HodJ1,J2)
M The following strategy is used to compute the resonance
= w1y + wpdy+ 2 E hml mZJTlJanZ (6) Iines_ from tracking. All the points of a regular 2D lattice in a
m=2 m;+my=m ’ section plane of phase space are iterdtetimes, and the
corresponding orbits are Fourier analyzed. After discarding
(we denote the invariant actions by capital lette$e reso- the points whose orbits have resonant frequencies, the ac-
nance conditior(4) on the frequencie§);=dH/3J; reads tions are computed by Ed3) for the remaining ones: the
plot of these points in thelg ,J,) plane exhibits empty chan-
nels corresponding to the resonances. In Fig. 1 we show, for
Qi+ Quop—27/+ > > [dy(my+ Dhm 1m, the quadratic Fieon map with linear frequencies;=0.28
m=1 My +my=m X 27 and w,=0.31X 277, the results obtained by choosing
+ oMyt 1)hml,m2+1]JTlsz2:0- (7) ~ 600x600 points in the square<0x<0.5, 0<y=<0.5, and
px=py=0. The integer vector corresponding to any reso-
nance |;,9,,7) can be read in Fig. 2, where the resonance

M-1

At the lowest truncation orde =2, the curves defined by
Eq. (7) are straight lines, and at the next ordiér=3 they are
arcs of conics.
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J1 FIG. 4. Comparison between the amplitude of {B¢D) reso-
nance of the Feon map with linear frequencies (0.205
FIG. 2. Comparison between the resonance lines computed nux 27,0.618034« 27) computed numerically and with a quasireso-
merically and using the nonresonant normal from at order 4, for thenant normal form. The truncation order bff in Cartesian coordi-
4D Henon map with linear frequencies (0.281,0.31x 27). nates are §continuous ling and 6(dashed ling
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lines, computed from Eq(7) with M =2, are shown. The corresponding to the separatrix, whétrés the valueH takes
agreement is excellent near the origin, where the resonana the hyperbolic points, we evalualg. (J,), which gives
width is below the pixel dimension. the solid and dotted lines of Fig. 4 corresponding to trunca-
We computed the mean square deviatioof the Fourier  tion orderM=4 and 3(the truncation order oH is 2M
interpolation with respect to the orbit for fixed valueskof  referred to cartesian coordinates
and N. To every initial condition in the square <x The resonance plot in action space provides an effective
<0.5,0<y=0.5, andp,=py=0, a tone of gray has been pjcture of the resonance structures, and is suitable to inves-
assigned according to the value of having chosemN tigate the chaotic regions near the short term stability border.
= 10" andK =10. In Fig. 3, we show the result of this analy- The jnvariance of actions for a small periodic modulation of
sis for the Heon map with linear frequencies; =0.205 e jinear frequencies, and consequently the stability of the
x2m andw,= (65— 1)X close to the resonance (5,0,1). resonance patterns in action space, have been checked. The
The trajectories withr>2x 10" have been dropped from ,mptation of the resonance lines with the lowest order
the figure, since we assume them to be chaotic, or at thg, o) forms is straightforward, whereas the analytic deter-

bolrlderhof akl cdh?otm reglont.)_tThl\chonJecture Tr?s been nliJme{— ination of the resonance width is more tricky, since it re-
cafly checked for some oruits. Ye compare these results with, ires the computation of the corresponding quasiresonant

the quasiresonant normal f(_)rm .for the (5,0,1) re€SONanCeormal form and the numerical evaluation of the invariants.
whose lowest order Hamiltonian readd=hg(j,j2)

+Aj§/2cos(Eﬂl+é), where hy o and Ajflz are the leading The_proposed_ m_ethod is suitable to investigate the betatronic
: : motion of realistic accelerator models or the data taken from

terms ofHyoandHg . Above and below the separatrix, the . . : ) ) : .
. ; ’ L2 . . experiments with pencil beams, since it provides a picture of
invariant action Jq is given by J; : . : . X

1 2m . .2 . T nonlinear resonances in the space of invariants, with the
=(2m) Jo"11(61,]2;,E)d6y, wherej, is defined implicitly same computational load as the standard frequency analysis
by H(j1,i2,61)=E, andE is fixed by the initial condition P quency analysis.
[11]. Correspondingly the angl®; is computed and, to- This work was partially supported by a Human Capital

gether withJ,=j,, ®,= 6, defines the canonical transfor- and Mobility CEE grant under Contract No. CHR XCT
mation to the new variables. By computing the solutidps  93.0330.
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